
PHYSICAL REVIEW E OCTOBER 1999VOLUME 60, NUMBER 4
Mesoscopic model for the viscosities of nematic liquid crystals
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Based on the definition of the mesoscopic concept by Blenket al. @Physica A174, 119 ~1991!; J. Noneq.
Therm.16, 67 ~1991!; Mol. Cryst. Liq. Cryst.204, 133 ~1991!# an approach to calculate the Leslie viscosity
coefficients for nematic liquid crystals is presented. The approach rests upon the mesoscopic stress tensor,
whose structure is assumed similar to the macroscopic Leslie viscous stress. The proposed form is also the
main dissipation part of the mesoscopic Navier-Stokes equation. On the basis of the correspondence between
microscopic and mesoscopic scales a mean-field mesoscopic potential is introduced. It allows us to obtain the
stress tensor angular velocity of the free rotating molecules with the help of the orientational Fokker-Planck
equation. The macroscopic stress tensor is calculated as an average of the mesoscopic counterpart. Appropriate
relations among mesoscopic viscosities have been found. The mesoscopic analysis results are shown to be
consistent with the diffusional model of Kuzuu-Doi and Osipov-Terentjev with the exception of the shear
viscositya4. In the nematic phasea4 is shown to have two contributions: isotropic and nematic. There exists
an indication that the influence of the isotropic part is dominant over the nematic part. The so-called micro-
scopic stress tensor used in the microscopic theories is shown to be the mean-field potential-dependent repre-
sentation of the mesoscopic stress tensor. In the limiting case of total alignment the Leslie coefficients are
estimated for the diffusional and mesoscopic models. They are compared to the results of the affine transfor-
mation model of the perfectly ordered systems. This comparison shows disagreement concerning the rotational
viscosity, whereas the coefficients characteristic for the symmetric part of the viscous stress tensor remain the
same. The difference is caused by the hindered diffusion in the affine model case.@S1063-651X~99!11410-7#

PACS number~s!: 61.30.Cz, 66.20.1d, 83.70.Jr, 83.20.Di
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INTRODUCTION

The viscous stress tensors is a crucial part of the mac
roscopic Navier-Stokes equation that governs flow of
medium. In the case of liquid crystals, anisotropy of the s
tem leads to numerous terms and viscosity coefficients in
tensor in order to describe flow properties. Recently there
been much interest in calculating nematic viscosities. A co
mon approach uses statistical models@1–13# based on the
Fokker-Planck~FP! equation approach introduced by He
@14# and Doi@15#. These theories have revealed that the v
cosity coefficients can be expressed as certain polynomia
local equilibrium orientational order parameters multipli
by a factor depending on the particle geometry and the r
tional diffusion coefficient. This property has been int
itively taken for granted in some previous theoretical a
experimental attempts to explain viscosity phenomena.
analogy to the Navier-Stokes equation, a mesoscopic co
terpart of the stress tensorsmes is a matter of importance in
the balance equation for the orientation-dependent me
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copic momentum. A general form of this equation, alo
with the orientational balances for mass, spin, energy,
alignment tensors, have been derived in@16# in terms of the
position x, the microscopic directora, and the timet vari-
ables. In this description the whole information about t
order of the system is exclusively contained in the proba
listic orientational distribution function~ODF!. The fact that
the order parameters appear explicitly in the expressions
the viscosity coefficients in the FP theories indicates t
smescontains, besides ODF, components of the orientatio
variablea. A particular form ofsmes not only would com-
plete knowledge about orientational balances but also wo
allow us to perform viscosity analysis that might lead
wider understanding of the mechanism, which finally giv
order dependence of the viscosities.

The purpose of the paper is to calculate the Leslie visc
coefficients from the proposed general form of the mes
copic stress tensorsmes. A theoretical paper with a simila
purpose has been done in@17#. In this paper the authors hav
combined features of the partially aligned systems compo
of the rigid ellipsoidal particles with the predictions from th
affine transformation~AT! model@18#. The main idea of the
AT model is to relate physical properties of a perfec
aligned anisotropic fluid to those of a linearly viscous isot
pic fluid by the use of the affine variable transformation.
4226 © 1999 The American Physical Society
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PRE 60 4227MESOSCOPIC MODEL FOR THE VISCOSITIES OF . . .
a result a stress tensor expressed in components of the
entational variablea has been obtained. This form has be
applied in@17# for the case of the partially aligned system
The paper provides a very good insight into the proble
However, the predictions about the rotational viscosity
not in accordance with the Ericksen-Leslie continuum the
@19–21#. A rotational viscosity tensor is predicted instead
the usual scalar rotational viscosity. Consequently, the P
odi relation cannot be fulfilled. This is an effect of the a
sumed hindered particle rotations.

The presented mesoscopic approach is consistent with
microscopic models. Moreover, it naturally includes the is
tropic contribution to the shear viscositya4 in the aniso-
tropic phase.Although a severe disagreement between th
retical results and the experimental data fora4 has already
been noticed@12#, not much theoretical indication has e
isted so far about the role of the isotropic effect.

The paper is organized as follows. Section I provides
necessary phenomenological definitions. Section II int
duces the mesoscopic concept of orientational balances
locities, and stress tensor. In Sec. III a derivation of the m
roscopic stress tensor based on the mesoscopic descript
presented. In Sec. IV a derivation of the total alignment lim
for the viscosity coefficients is given by the Kuzuu-Doı´ and
Osipov-Terentjev~KD-OT! approaches and compared to t
result of the original AT model. Special attention has be
paid to the rotational coefficientg1. In Sec. V we give a
summary of the mesoscopic-approach conclusions and
sults.

I. PHENOMENOLOGY

Ericksen-Leslie stress tensor.In the Ericksen-Leslie~EL!
theory @19–21# a unit vector, or ‘‘director’’n, is introduced
to represent the macroscopic symmetry axis at each poin
space. The stress tensors is assumed to depend on the v
locity gradients¹v, the directorn, and a corotational time
derivative of the directorN. For an incompressible nemat
liquid crystal, it reads

s5a1nn„nn:G…1a2nN1a3Nn1a4G

1a5nG–n1a6G–nn, ~1!

where we have used

G[ 1
2 @¹v1„¹v…T#,

V[ 1
2 @¹v2„¹v…T#,

N[ṅ1V–n, ~2!

and@V–n‡i5V i j nj . As usual, the isotropic terms have be
incorporated into the pressure. The viscosity consta
a1 , . . . ,a6 are the Leslie viscosity coefficients and th
whole equation~1! is known as the first constitutive Lesli
equation.

The antisymmetric part of Eq.~1!,

e:s5n3@2g1N2g2~G•n!#, ~3!

(e is the completely antisymmetric unit tensor! contains the
so-called rotational viscosity coefficientsg1 andg2 defined
ri-
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by g1[a32a2 and g2[a62a5. They determine the vis-
cous torques acting on the molecule:g1 is characteristic of
the torque associated with the angular velocity of the direc
and g2 gives the strength of the torque in the shear flo
Another important parameter commonly used in hydrod
namics is the tumbling parameterl[2g2 /g1, which for
ulu<1 is related to the flow alignment angle.

The EL theory can be extended by including the effect
external fields like magnetic, electric, or elastic deform
tions, in the form of the molecular fieldhmol . In this case the
energetically favorable state is obtained according to the

05n3~hmol2g1N2g2G•n!. ~4!

Due to Eq.~4! the director has to attain such an orientati
that the effective torque, or the asymmetric part of the str
tensor, vanishes. This principle of angular momentum b
ance in nematics is known as the director equation or
second Leslie constitutive equation.

As pointed out in the Introduction, our goal is to sho
that the viscositiesa i , g i , andl of nematic liquid crystals
can be calculated on the basis of the mesoscopic orie
tional balances, thus to form a bridge between this type
description and the Fokker-Planck theories.

II. MESOSCOPIC CONCEPT

A. Orientational balances

In mesoscopic hydrodynamic description a liquid crys
is treated as an anisotropic medium requiring additional
dependent orientational variables in the domain of the fi
quantities asthe microscopic directora and itsorientation
change velocity w(a,x,t)[]a/]t, with the property
w(a,x,t)•a50. Because in a mesoscopic grain all the m
ecules are assumed to be ordered due to the vectora, it is
also possible to identify the microscopic director as the lo
principal axis of the molecule~see Fig. 1!. Fields of physical
quantities defined on the nematic space (•)[(a,x,t)PS2

3R33R1 are introduced in the mesoscopic concept. T
second ingredient to a mesoscopic theory is the orientatio

FIG. 1. A primitive view of the mesoscopic coarse grain. T
orientation of the grain is assumed to agree with the particle or
tation and the mesoscopic potential is assumed to agree with
mean-field potential acting on the individual molecule.
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4228 PRE 60CHRZANOWSKA, KRÖGER, AND SELLERS
distribution functionf (•). As a statistical elementf (•)da is
regarded as the probability of finding a particle in the surfa
elementda arounda.

From the global balances of mass, momentum, ang
momentum, and internal energy, it is possible to derive c
respondinglocal orientational balance equations.For in-
stance, the mass and momentum mesoscopic balances

05
]

]t
r~• !1“x•@r~• !v~• !#1“n•@r~• !w~• !#, ~5!

05
]

]t
@r~• !v~• !#1“x•@r~• !v~• !v~• !2smes

T ~• !#

1“n•@r~• !w~• !v~• !#. ~6!

Here, the orientational mass density is given byr(•)
[r(x,t) f (•), where f (•) stands for the orientational distr
bution function andr(x,t) is the macroscopic mass densi
at the pointx; v(•) is the orientational material velocit
~barycentric velocity of all molecules, whose orientation
given by the microscopic directora at positionx at time t)
and smes

T (•) denotes the transposed mesoscopic~orienta-
tional! stress tensor. Orientational averages of these e
tions give back, by definition, the macroscopic mass bala
and the Navier-Stokes equations, and also, consequently
Leslie viscous stress tensor. However, with the exception
the Ehrentraut and Hess model@17#, such a calculation or
applications of this formalism to the description of liqu
crystals properties has been missing. Note also that the
soscopic concept can be applied to other nonequilibrium
scriptions, which are based on the evolution of the proba
listic quantities like the dielectric relaxation process
@22,23#.

A few words of explanation are needed about the ap
cability of the wordsmesoscopicandmicroscopic, for which
an interchanged usage can be often met. The adjectiveme-
soscopicin the standard definition refers to the coarse gra
containing a large number of molecules. As compared to
macroscopic scale these grains are small enough to trea
system as a continuum in space. In a general sense the
soscopic description includes more information than a m
roscopic one, namely, the additional variablea in the domain
of the mesoscopic fields. In the mesoscopic description
ther notion of the molecular potential nor diffusivity hav
been used so far. On the other hand, the adjectivemicro-
scopic is used in the models, which refer to an individu
molecule’s state or properties. In view of the above, the
and AT models can be calledmicroscopic.

B. Mesoscopic stress tensor in the affine transformation mode

A structure of the mesoscopic stress tensor, a visc
stress tensor, which is defined on the mesoscopic varia
has appeared in consideration of the AT model@18#. Here we
summarize the basic ideas of this model.

A volume-preserving transformation of a sphere into
ellipsoid of revolution of the axis ratioQ (Q.1 for rodlike
particles,Q,1 for disclike particles! and the axis of sym-
metry a,
e
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r̃5A1/2
•r , ~7!

transforms a fluid of spheres into a fluid of anisotropic p
ticles where the particles’ axes are totally ordered. The tra
formation matrices are given by

A[Q2/3@d1~Q2221!aa#,

A21[Q22/3@d1~Q221!aa#. ~8!

It follows that the strain rates are related as

G̃5 1
2 ~A21/2

•“v–A1/21A21/2
•~“v!T

•A1/2!. ~9!

With the usual assumption for the viscous stress tensor o
incompressible isotropic fluids̃52h refG̃, whereh ref is the
shear viscosity of a reference fluid of spherical particles
the same density and temperature, the mesoscopic~viscous!
stress tensor for the anisotropic fluid becomes

sord5A21/2
•s̃•A1/2,

sord5h ref~A21
•“v–A1“v! ~10!

~ord denotes perfectly ordered!. Substituting Eq.~8! into Eq.
~10! the following stress tensor in terms of the mesosco
variables

sord5a1
ordaaaa:G1a4

ordG1a5
ordaG–a

1a6
ordG–aa1a2

ordaV–a1a3
ordV–aa ~11!

is obtained. While considering the case of the perfec
aligned ellipsoids, one can identify their symmetry axisa
with the directorn in the Ericksen-Leslie theory. The axi
ratio Q is the only adjustable parameter in the AT mod
The coefficients of the perfectly aligned fluid follow

a1
ord52h ref~Q2Q21!2, a2

ord5h ref~12Q2!,

a3
ord5h ref~Q2221!, a4

ord52h ref,

a5
ord52a2

ord, a6
ord5a3

ord,

g1
ord5a3

ord2a2
ord5h ref~Q2Q21!2,

g2
ord5a6

ord2a5
ord5h ref~Q222Q2!,

l5~11Q2!/~12Q2!. ~12!

In the above, in order to relate a part of the symmetric str
tensor to the rotational viscosity coefficientg2 the Parodi
relationa2

ord1a3
ord5a6

ord2a5
ord has been used.

C. Definition of the mesoscopic stress tensor

We follow the assumption from@17# that the dependenc
of the mesoscopic stress tensor on the mesoscopic varia
becomes unchanged even if we allow the system to fl
freely. However, the expression for the mesoscopic str
tensor should also contain information that the system is
perfectly aligned. This feature can be provided by the fo
of the orientational distribution function. Moreover, since t
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molecules can change their orientational position,smes
should contain terms with the angular mesoscopic velo
U. In the following we will use the ansatz for the mesosco
stress tensor of the form

smes~• !5a1
freeaaaa:Gf ~• !1a2

freeaUf ~• !1a3
freeUaf ~• !

1a4
freeGf ~• !1a5

freeaG–af ~• !1a6
freeG–aaf ~• !,

~13!

where

U[ȧ1V–a. ~14!

We adopted herea i
free values instead of the perfect ord

viscositiesa i
ord in order to account for the partial alignme

dependence of the friction and the diffusion coefficients. T
quantity smes(a,x,t) is the stress tensor of particles havin
the particular orientationa at point x in space. Note tha
ansatz~13! is such that it is in accordance with the Les
macroscopics @Eq. ~1!#, which is a special assumption.
also fulfills the Parodi relationa3

free1a2
free5a6

free2a5
free.

III. MESOSCOPIC DERIVATION
OF THE MACROSCOPIC STRESS TENSOR

The macroscopic stress tensors for the partially aligned
fluid can be obtained by averaging the mesoscopic st
tensorsmes(•) @Eq. ~13!# over all orientations. The main dif
ficulty lies in the relationship betweenU, the angular veloc-
ity of the microscopic directora, andN, the angular velocity
of the macroscopic directorn. This problem can be resolve
by considering links between the phenomenological and
mesoscopic theories.

Central to all kinetic theories is the diffusion equation f
the time evolution of the orientation distribution functio
f (a,t),

] f ~a,t !

]t
5DrL•FL f ~a,t !1

f ~a,t !

kBT
LVmf~a!G

2L•@VJeff ~a,t !#, ~15!

which describes the orientational Brownian motion of t
particle in the mean-field potentialVmf(a). The long axis of
the particle is given by the vectora and L5a3“a is the
rotation operator, i.e., the covariant derivative on theS2;
VJef stands for the angular velocity gained by the parti
under influence of the external velocity gradient field andDr
is the rotary diffusion coefficient. Because the system is
sumed to be spatially homogenous, there is no position
pendence in Eq.~15!.

The mesoscopic counterpart of kinetic equation~15!
originates from the balance law for mass density~5! @16#

05] t f ~• !1“x•@v~• ! f ~• !#1“a•@w~• ! f ~• !#

1 f ~• !@] t1v~• !•“x# ln r~x,t !. ~16!

Assuming that the system is uniform and incompressib
i.e., all gradients vanish except for“v, which is notx de-
pendent, Eq.~16! gives the equation@24#
y
c

e

ss

e

s-
e-

,

] f ~a,t !

]t
1L•@vmesf ~a,t !#50, ~17!

where the mesoscopic velocityvmes and the orientation
change velocityw(•) are related as

vmes[a3w~• !. ~18!

Whether the two kinetic equations, Eqs.~15! and~17!, can
be compared is a subtle problem@25#. The first equation
describes the state of an individual molecule influenced
the mean-field potential, whereas the second equation
scribes the orientation of the whole mesoscopic coarse gr
Here comes the most important assumption. To iden
these two distribution functions as the same object we h
to introduce implicitly the notion of the molecular potenti
field into the mesoscopic description by assuming that
molecules in the grain are perfectly ordered and reacting
the same mean-field potential~see Fig. 1!. Comparison be-
tween the structures of Eqs.~15! and ~17! gives then a par-
ticular form of the mesoscopic angular velocityvmes,

vmes5VJef2DrL S ln f 1
Vmf

kBTD . ~19!

Equation~19! says that the instant effective mesoscopic a
gular velocity of the molecule is the velocity gained und
influence of the macroscopic velocity gradient field dimi
ished by the loss due to the diffusion processes of Brown
motion in the mean-field potential~so-called drift!. For rigid
ellipsoids of revolution an explicit form ofVJef has been
given by Jefferey@26#,

VJef5Ba3~G•a!2a3~V•a!, ~20!

where B is the shape form factor usually takenB5(p2

21)/(p211), with p being the particle’s axial length-to
width ratio.

Using expression~19! the angular velocity of the micro
scopic directorU reads

U5vmes3a1V•a

5(d2aa)•FB~G•a!2~V–a…#

2DrFL S ln f 1
Vmf

kBTD G3a1V•a. ~21!

In the above the first term on the right-hand side descri
the hydrodynamic effect of the Jefferey-type due to the p
ticle rotations caused by the velocity gradient field. The s
ond term takes into account the diffusional reorientation
fects. Although in the AT model internal free rotations a
disallowed, there may still exist nonzero curlv and this effect
is mirrored by the last part of Eq.~21!. All these contribu-
tions are equally important.

The angular velocity of the form as in Eq.~21! has been
applied to the evaluation of mesoscopic stress tensor~13!
~see Appendix!. Similarly to Eq.~21! in the stress tensor on
can also distinguish three qualitative parts. The first part
lows the structure, which is present in the original AT mod
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The second part gives the contribution connected with
Jefferey angular motion and the third part takes into acco
the diffusional effects. All three parts contain symmetric v
locity gradients, whereas the antisymmetric velocity gra
ents may occur only in the third diffusional term. It turns o
as compared to the KD-OT theory results, that evaluation
only the diffusional term can already give the whole stre
tensor. From this argumentation it emerges that the affi
type stress and the Jefferey-type stress act as opposit
fects, canceling each other.

A resultant expression for the stress tensor reads

smes~• !52 f ~• !DrFa2
freea

d

da S ln f ~• !1
Vmf

kBTD
1a3

free d

da S ln f ~• !1
Vmf

kBTDaG1a4
freeGf ~• !

~22!

and the following relations for the mesoscopic viscosit
hold:

Bg1
free52g2

free→l free5B,

a1
free5B~a2

free1a3
free!,

B~a2
free1a3

free!52~a5
free1a6

free!. ~23!

Using Eq.~22! the symmetric and antisymmetric parts of t
macroscopic stress tensor can be calculated as

sasym5E f 0hsmic
asymda,

ssym5a4
freeG1E f 0hsmic

symda, ~24!

where

smic
asym5

1

kBT
Drg1

free1

2 S a
dVmf

da
2

dVmf

da
aD , ~25!

and

smic
sym5

1

kBT
Drg1

freeBF3kBT~aa2d!1
1

2 S a
dVmf

da
1

dVmf

da
aD G .
~26!

In the above,h is the perturbation of the distribution functio
f 5 f 0(11h) linear in the velocity gradients and the equili
rium ODF is assumed asf 05exp(2Vmf /kBT). In Eq. ~26!
we have also used the relation2(a2

free1a3
free)5g1

freeB,
which comes from the Parodi relation imposed on conditio
~23!. Also, since Eq.~25! relates to the molecular torque
which contains only the terms with the mean field potentia
the property

Drg1
free5kBT ~27!

is expected to hold.
Equations~25! and ~26! with Eq. ~27! give the so-called

microscopic stress tensor@27#—a stress tensor expressed
e
nt
-
i-
,
f

s
e-
ef-

s

s

,

terms of the molecular mean-field potential, which origina
has been introduced by Doi@15# through the consideration
on the change of the free-energy caused by the externa
locity field. It is not completely obvious on what grounds th
results based on the free energy considerations coincide
the FP equation model. However, concluding from the c
culation details it can be stated that the standard Brown
diffusion term relates to the change in the orientational
tropy, whereas the mean potential drift relates to the cha
in the interaction term of the free energy.

Summing up the above considerations one can also ar
at another conclusive observation. Since the starting and
final expression have the form of statistical averages, b
averaged quantities are the same. Thus the objectf 0hsmic ,
which contains the microscopic stress tensor, can be
garded as the mean-field representation of the mesosc
stress tensor.

In order to obtain explicit expressions for the Leslie v
cosities one can follow now the calculation of the Osipo
Terentjev approach@4,12#. The main point of this model is
the form of the distribution function. Since the flow brea
the cylindrical symmetry of a nematic, it has been sugges
within the assumption of low-velocity gradients, that the p
turbationh should consist of all the combinations~there are
four of them! of the velocity gradient and the components
the directorn and the azimuth vectore multiplied with ap-
propriate probabilistic functions. With this assumption it
possible to solve kinetic equation~15! almost completely in
an analytical way and, next, calculate the macroscopic
cous stress tensor. Since the KD and OT approaches
been proven to lead to the equivalent results@12# for the
expressions for the viscosity coefficients, we prefer the ea
Kuzuu-Doi-like formulation to the convoluted integrals o
the Osipov-Terentjev-type. The results for the viscosity c
efficients are

a15a1
freeS4 ,

a25a2
free~11m21!S2 ,

a35a3
free~12m21!S2 ,

a45a4
free1g1

freeB2 1
35 ~725S222S4!,

a55a5
freeFB

7
~3S214S4!1S2G ,

a65a6
freeFB

7
~3S214S4!2S2G ,

g15g1
freem21S2 ,

g25g2
freeS2 ,

m5S2 Y K f 0ra

]Vmf

]u L , ~28!
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wherera is one of the four components ofh determined by
the differential equation

d2ra

du2
1S cotu1

1

kBT

dVmf

du D dra

du
2

ra

sin2u
5

1

kBT

dVmf

du
.

~29!

For more details, see@3,12#. In the above we have used co
ditions ~23! to show the relation betweena i anda i

free.
The presented analysis, which starts from the mesosc

background, coincides with the way of the microscop
KD-OT theory, with the exception ofa4. The main differ-
ence is that the mesoscopic approach naturally includes
isotropic contributiona4

free to the shear viscositya4. So far,
the existence of this contribution has not attracted eno
attention. However, the importance is significant. There
ists an indication that the isotropica4

free might be about ten
times larger than the nematic part ofa4 @12#. Also, sincea4
enters all the viscosity values measured in the Miesow
experiment, the lack of any molecular theory fora4

free prac-
tically desists the KD-OT theory from successful applicati
to analyze the experimental data for the Miesowicz coe
cients@28#. To avoid this problem one should consider su
differences between the Miesowicz coefficients in which
coefficienta4 is eliminated.

IV. PERFECT ALIGNMENT LIMIT

Formulas~28! with respect to properties~23! and ~27!
present exactly the KD expressions~besidesa4

free). They
should remain valid also in the special case of total ali
ment. Using the fact that all the order parameters are equ
unity in perfectly ordered systems the symmetric viscosi
can be easily predicted,

a1
ord52

kBT

Dr
ord

B2,

a2
ord1a3

ord52
kBT

Dr
ord

B,

a5
ord1a6

ord5
kBT

Dr
ord

B2,

a4
ord50. ~30!

By virtue of the Parodi relation the limit for the rotation
coefficientg2 follows

g2
ord52

kBT

Dr
ord

B. ~31!
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The second rotational coefficientg1 is more problematic.
The common result of the OT and KD approaches is
integral

g15E f 0ra

dVmf

du
d cos~u!, ~32!

for which one cannot check the limit without solving th
kinetic equation for the functionra . Both, Eqs.~29! and
~32!, require knowledge of the particular mean-field pote
tial. It has been noticed that the functionra can also occur in
the expression fora21a3 in the OT formulation, which
reads@12#

a21a35BE f 0raS 3kBT sin~2u!1
dVmf

du
cos~2u! Dd cos~u!.

~33!

Using Eq.~30! the perfect-order limit of the integral on th
right-hand side of Eq. ~33! can be estimated as
(2kBT/Dr)S2. This result imposes the property

ra@cos~u!51#
]Vmf

]u
@cos~u!51#51, ~34!

where the perfect alignment equilibrium distribution functio
f 0 has been taken in the delta-function formd„cos(u)21….
Applying Eq.~34! to Eq.~32! the total alignment limit of the
integral forg1 is obtained regardless the mean-field poten
considerations,

g1
ord5

kBT

Dr
ord

. ~35!

The relevant tumbling parameter reads

lord5B. ~36!

It can be useful to compare the obtained results, Eqs.~30!,
~31!, ~35!, and~36!, to the viscosity coefficients predicted b
AT model ~12!. Introducing the formula for the rotationa
diffusion coefficientDr ,

Dr
ord5

kBTQ2

h ref~Q211!2
, ~37!

one obtains the symmetric viscosities take identical forms
the affine, mesoscopic, or KD-OT theories, as already
ticed in @9#. As far as the rotational coefficientg1 and the
tumbling parameterl[2g2 /g1 are concerned, the KD-OT
model and the AT model lead to different predictions. T
most illustrative is the result for the tumbling paramet
which in the KD-OT model isl5B, whereas in the AT
model, predictsl5B21. Due to this disagreement the A
model cannot be applied to the description of the asymme
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viscosity in the systems where the reorientational proce
are expected to be governed by the diffusion processes.
conclusion does not concern symmetric viscosity. The c
sistency between the results for the symmetric part of
stress tensor in the AT model and the perfect alignment li
of the KD-OT theory may be also the source of the inform
tion about the nature of the isotropic contributiona4

free.
Since the viscosity of the reference isotropic fluidh ref by
definition should remain indifferent to the strength of ord
of the anisotropic counterpart system, the AT model va
a4

ord52h ref can be considered as a general form ofa4
free ap-

pearing in Eq.~28!. This suggestion can be tested by t
computer simulations.

V. DISCUSSION AND SUMMARY OF RESULTS

The idea of the aligned hard-rod system as simplificat
of freely rotating rods is quite common. It has led to a nu
ber of interesting predictions like stable transition from ne
atic to smecticA phase@29–31#, depletion-driven nematic
nematic demixing transition@32#, stable nematic columna
phase transition in binary mixtures of long and short ro
@33#, or S2 dependence of the anisotropy of the diffusi
constant@34#. Following this trend we have also used th
conclusion of the AT model concerning the mesosco
stress tensor@18,17#, which is indispensable in the orienta
tional balance equations for the analysis of the viscosity
the partially oriented systems with free particle rotatio
~Sec. III!. The form of the stress tensor predicted by the A
model is completed with the terms responsible for the in
nal free rotations of the particles. The orientation distribut
function that weights the AT-like expression is assumed
account for the strength of order of the system@Eq. ~13!#.
Moreover, for the mesoscopic viscosities we have adop
a i

free values instead of the perfect order viscositiesa i
ord ~as

used in the original and modified AT approaches! in order to
account for the order degree of the friction and diffusi
coefficients in the case of partial alignment. As for the m
soscopic velocity we have used the deviation of the dif
sional rotation velocity from the average angular veloc
with which the particles rotate under influence of the exter
velocity gradient field. An expression for this velocity can
obtained from the FP equation@Eq. ~19!#. In order to obtain
the macroscopic stress tensor an orientational averag
smes has been taken. This average can be transformed
another expression, also of a form of the statistical avera
which contains the so-called microscopic stress tensor
stress tensor expressed in terms of the molecular mean-
potential. These two averages are equivalent and may
vide an interpretation of the microscopic stress tensor a
mean-field representation of the mesoscopic stress ten
Calculation of the macroscopic stress involves three qua
tive effects~Appendix!. The first effect includes the stress
as considered in the standard AT model. The second e
represents the stresses due to the diffusion process an
third effect corresponds to the reaction of the particles to
velocity gradient field. The first and the latter contributio
act in opposite ways. They cancel themselves leaving
diffusion effect mainly responsible for the viscosity. Th
calculation allows us also to obtain the particular values
the mesoscopic viscositiesa i

free, Eqs. ~23! and ~27!. How-
es
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ever, it has been observed that the symmetric contributio
the stress tensor obtained from the diffusional mean-fi
model coincides with the results of the AT models. This fa
has led to the incorrect conclusion that the AT model, wh
does not take into account the possible reorientation of p
ticles, holds in general.

Explicit Leslie viscosities can be calculated by the use
the KD-OT techniques@12#. The conclusions of the mesos
copic and the FP origin microscopic approaches are con
tent with the exception of the shear viscositya4. More at-
tention should be paid to this fact. In the mesosco
approach it is clearly seen that the isotropic contribution
a4, even in the nematic phase, is relevant. From the preli
nary assessment@12# it might be ten times larger than th
theoretically obtained nematic contribution. Because of t
fact certain restrictions should be imposed on the compar
between the theories and the experimental data. For insta
in the Miesowicz experiment where all the measured visco
ties containa4, one has to consider such combinations of t
data coefficients that do not includea4 in order to be able to
apply the theoretical models for the data description. Alt
natively, the need for separate measurements of the i
vidual Leslie coefficients appears.

On the basis of viscosity expressions~28! we have calcu-
lated their total alignment limits and concluded about t
anisotropy shape form factors associated with the partic
viscosities in Sec. IV. Special attention has been paid tog1.
It turns out that the comparison for the symmetric viscosit
can be resolved in a consistent way with respect to an ap
priate perfect order limit for diffusion coefficient~37!. As far
as the rotational properties are concerned disagreemen
tween the AT model and the KD-OT has been pointed o
The presented analysis in Secs. III and IV highlights t
correspondence between the total alignment approaches
the free particle rotations’ models. So far, this relations
has remained unknown leaving the impression that the m
tioned theories are contradictory.

To sum up, we have presented a mesoscopic approac
the viscosity theory of nematic liquid crystals, which is co
sistent with the microscopic descriptions in@3,12#. Our con-
siderations show the necessity of further research on the
ture of the rotational diffusion coefficients and the isotrop
viscositya4

free in the nematic phase. We hope that our resu
will help in future theoretical investigations of these prope
ties.
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APPENDIX

Using the expression for the angular velocity of the m
croscopic director

U5B~G•a!2„V–a…2aB~G:aa!

2DrFL S ln f 1
Vmf

kBTD G3a1V•a, ~A1!

the mesoscopic stress tensor effectively will read
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smes~• !/ f ~• !5a1
freeaaG:aa1a2

freeaH BG•a2aBG:aa2DrFL S ln f 1
Vmf

kBTD G3aJ
1a3

freeH BG•a2aBG:aa2DrFL S ln f 1
Vmf

kBTD G3aJ a1a4
freeG1a5

freeaG–a1a6
freeG–aa

5aaG:aa~a1
free2Ba2

free2Ba3
free!1a4

freeG1a~G•a!~Ba2
free1a5

free!1~G•a!a~Ba3
free1a6

free!

1a2
freeDraH Fa3L S ln f 1

Vmf

kBTD G J 1a3
freeDr H Fa3L S ln f 1

Vmf

kBTD G J a. ~A2!
ien
ill
he

he

th

-

nt

ts

fi-
he
ef-

ent.
In the above expression the antisymmetric velocity grad
tensor may appear only in the diffusional term. We w
evaluate this term in the first order. We will be using t
representation of the orientation variablea and its derivative
d/da as

a5n cosu1esinu,

d

da
5~ecosu2n sinu!

d

du
1

n3e

sinu

d

dw
, ~A3!

where e is the azimuthal unit vector perpendicular to t
director n; a3L52d/da; daj /dai5d i j 2aiaj and
dai /dai52. The reference frame is chosen in a way that
components of the needed unit vectors readex5cosw, ey
5sinw, ez50, nx5ny , andnz51. A nontrivial formula for
the integration by parts follows

E daG
dF

dai
52E daF

dG

dai
12E daGFai , ~A4!

where da5dwd cosu. The diffusional part of the macro
scopic stress tensorIdiff reads@see Eq.~A2!#

Idiff52DrE f ~• !Fa2
freea

d

da S ln f 1
Vmf

kBTD
1a3

free d

da S ln f 1
Vmf

kBTDaGda. ~A5!

Keeping only relevant terms linear in the velocity gradie
like f 5 f 0(11h) and

ln f 5 ln f 01 ln~11h!52
Vmf

kBT
1h, ~A6!

expression~A5! will look like

Idiff52DrE daf 0Fa2
freea

dh

da
1a3

freedh

da
aG . ~A7!

By the use of Eq.~A4! Idiff can be evaluated as follows:
t

e

s

IdiffDr
215E dahFa2

freed~ f 0ai !

daj
1a3

freed~ f 0aj !

dai
G

22E daf 0haiaj~a2
free1a3

free!

5E dahFa2
freeai

d f0

daj
1a3

freeaj

d f0

dai
G

1E daf 0hFa2
freedai

daj
1a3

freedaj

dai
G

22E daf 0haiaj~a2
free1a3

free!

52
1

kBTE dah f0Fa2
freeai

dVmf

daj
1a3

freeaj

dVmf

dai
G

1E daf 0h~a2
free1a3

free!~d i j 2aiaj !

22E daf 0haiaj~a2
free1a3

free!. ~A8!

Splitting into the symmetric and antisymmetric par
gives

Idiff
sym52

Dr

kBT
~a2

free1a3
free!E dah f0FkBT~3aiaj2d i j !

1
1

2 S ai

dVmf

daj
1aj

dVmf

dai
D G

5E das i j
micr,symh f0 , ~A9!

Idiff
asym52

Dr

kBT
~a3

free2a2
free!E dah f0

1

2 Fai

dVmf

daj
2aj

dVmf

dai
G

5E das i j
micr,asymh f0 . ~A10!

Formulas~A9! and ~A10! agree with the stress tensor de
nition used in the KD-OT theory. This fact indicates that t
AT model contribution to the stress is balanced by the J
ferey effect in expression~A2! and the relations

Bg1
free52g2

free,

a1
free5B~a2

free1a3
free!,

B~a2
free1a3

free!52~a5
free1a6

free!, ~A11!

must hold. In this case both different models are consist



s

l.

t.

h-

n.
l.

t.

d

s.

i,

-

4234 PRE 60CHRZANOWSKA, KRÖGER, AND SELLERS
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@10# M. Kröger and S. Sellers, Mol. Cryst. Liq. Cryst. Sci. Tec
nol., Sect. A293, 17 ~1997!.

@11# L. A. Archer and R. G. Larson, J. Chem. Phys.103, 3108
~1995!.

@12# A. Chrzanowska and K. Sokalski, Phys. Rev. E52, 5228
~1995!. See also, Refs.@3,4,8#.

@13# M. Fialkowski, Phys. Rev. E53, 721 ~1996!.
@14# S. Hess, Z. Naturforsch. A31A, 1034~1976!.
@15# M. Doi, J. Polym. Sci., Polym. Phys. Ed.19, 229 ~1981!.
@16# S. Blenk, H. Ehrentraut, and W. Muschik, Physica A174, 119

~1991!; S. Blenk and W. Muschik, J. Non-Equilib. Thermody
16, 67 ~1991!; S. Blenk, H. Ehrentraut, and W. Muschik, Mo
Cryst. Liq. Cryst.204, 133 ~1991!.
.

,

@17# H. Ehrentraut and S. Hess, Phys. Rev. E51, 2203~1995!.
@18# D. Baalss and S. Hess, Phys. Rev. Lett.57, 86 ~1986!; Z.

Naturforsch., A: Phys. Sci.43, 662 ~1988!.
@19# F. M. Leslie, Q. J. Mech. Appl. Math.19, 357 ~1966!.
@20# F. M. Leslie, Arch. Ration. Mech. Anal.28, 265 ~1968!.
@21# F. M. Leslie, Continuum Mech. Thermodyn.4, 167 ~1992!.
@22# P. L. Nordio, G. Rigatti, and U. Segre, Mol. Phys.25, 129

~1973!.
@23# A. Kozak and J. Moscicki, Mol. Cryst. Liq.. Cryst., Lett. Sec

5, 195 ~1988!.
@24# B. Su, Fokker-Planck Dynamics of Nematic Liqui

Crystals—A Theoretical Perturbative Approach~Wissenschaft
& Technik, Berlin, 1996!.

@25# Masao Doi~private communication!.
@26# G. B. Jeffrey, Proc. R. Soc. London, Ser. A102, 161 ~1922!.
@27# A. Chrzanowska and K. Sokalski, Z. Naturforsch., A: Phy

Sci. 49, 635 ~1994!.
@28# J. Janik, J. K. Moscicki, K. Czuprynski, and R. Dabrowsk

Phys. Rev. E58, 3251~1998!.
@29# B. Mulder, Phys. Rev. A35, 3095~1987!.
@30# A. M. Somoza and P. Tarazona, Phys. Rev. Lett.61, 2566

~1988!.
@31# R. Holyst and A. Poniewierski, Mol. Phys.71, 561 ~1996!.
@32# R. van Roij, Ph.D. thesis, FOM Institute of Atomic and Mo

lecular Physics, Amsterdam, 1996.
@33# A. Stroobants, Phys. Rev. Lett.69, 2388~1992!.
@34# S. Hess, D. Frenkel, and M. P. Allen, Mol. Phys.74, 765

~1991!.


